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SUMMARY A shared binary decision diagram (SBDD) rep-
resents a multiple-output function, where nodes are shared
among BDDs representing the various outputs. A partitioned
SBDD consists of two or more SBDDs that share nodes. The
separate SBDDs are optimized independently, often resulting in
a reduction in the number of nodes over a single SBDD. We show
a method for partitioning a single SBDD into two parts that re-
duces the node count. Among the benchmark functions tested,
a node reduction of up to 23% is realized.
key words: shared binary decision diagram, SBDD, bi-partition,
multiple-output function, decomposition

1. Introduction

Various methods exist to represent multiple-output
functions [15]–[18]. Among them, shared binary de-
cision diagrams (SBDDs) [4], [11] are most commonly
used, since their sizes are usually smaller [18] than other
types of BDDs, such as multi-terminal binary decision
diagrams (MTBDDs) [16] and BDDs for characteristic
functions (BDDs for CFs) [1], [19]. Some authors [5] use
the term “multi-rooted BDD” instead of SBDD. How-
ever, for some applications, SBDDs are still too large
and more compact representations are required.

To further reduce memory storage we propose par-
titioned SBDDs, as a method to represent multiple-
output functions. Each part represents a set of out-
puts, and is optimized independently. Such BDDs are
considered as a special case of partitioned BDDs [6],
[12], [13] and free BDDs (FBDDs) [7], [8]. Note that
BDD nomenclature is not unified. For example, the
term “partitioned BDDs” has a different meaning for
certain authors [20].
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Applications of partitioned SBDDs are similar to
that of partitioned BDDs and FBDDs. When applied
to hardware synthesis, one replaces each non-terminal
node of an SBDD by a multiplexer (MUX), forming a
network for F . This is used to design multiplexer-type
FPGAs [3] and pass-transistor logic [22]. In such appli-
cations, minimizing the number of nodes in the SBDD
also minimizes the hardware required in the implemen-
tation.

Although our goal is a large reduction in the node
count, our results offer a design alternative when the
reduction is small. Since a bi-partition yields two sepa-
rate SBDDs, these can be implemented independently,
allowing a more flexible layout. The advantage of this
may be even more significant than the node count re-
duction [9].

2. Partition of SBDDs

In this paper, we consider ordered SBDDs, where the
input variables appear in the same order along all paths
through the graph beginning from a root node and end-
ing on a leaf node. Further, in this part of the paper,
we assume that, in all such paths, no variable appears
more than once.

An SBDD is considered as a compact BDD rep-
resentation of a multiple-output function, since nodes
can be shared among many outputs [11].

Example 2.1: Consider the two-output function:

f0 = x1x2 ⊕ x3x4,

f1 = x1x2 ∨ x3x4.

In this case, π = (x1, x2, x3, x4) is a good ordering of
the input variables for both f0 and f1. Note that some
nodes can be shared between f0 and f1, as shown in
Fig. 1. In the figures, dotted lines denote 0-edges, while
solid lines denote 1-edges. (End of Example)

In an SBDD, there can be only one ordering of
input variables for all output functions. Thus, the size
tends to be large when the individual functions have
different optimal orderings of the input variables.

Example 2.2: Consider the BDDs of functions:

f0 = x1x2 ∨ x3x4 ∨ x5x6,
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(a) Before sharing (14 nodes). (b) After sharing (10 nodes).

Fig. 1 Shared BDD.

Fig. 2 A pair of BDDs that has fewer nodes than an optimized
monolithic SBDD.
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Fig. 3 An optimized monolithic SBDD.

f1 = x1x4 ∨ x2x5 ∨ x3x6.

In this case, π0 = (x1, x2, x3, x4, x5, x6) is an optimal
ordering for f0, while π1 = (x1, x4, x2, x5, x3, x6) is
an optimal ordering for f1. Figure 2 shows the cor-
responding BDDs. Together, they require a total of
8×2 = 16 nodes. On the other hand, a minimum SBDD
for {f0, f1} requires 17 nodes, as shown in Fig. 3. In this
case, the pair of separately optimized BDDs is smaller
than the optimized monolithic SBDD for {f0, f1}. This
is an example of a partitioned BDD that is smaller than
the monolithic SBDD. (End of Example)

From these examples, we can formulate

Problem 2.1: (Partitioned SBDD)
Given a multiple-output function F , represent F by a
set of SBDDs so that the total number of nodes is min-
imized, where each SBDD is optimized independently.

3. Bi-Partition of SBDDs

In this section, we show an exact and a heuristic method
for solving the partitioned SBDD problem when there
are no more than two parts.

Definition 3.1: Let F = {f0, f1, . . . , fm−1} be the
set of the output functions. size(SBDD,F, π) denotes
the number of nodes in the SBDD for F , where π is
the ordering of the input variables. size(SBDD,F )
denotes the minimum size(SBDD,F, π) for F over all
orderings π.

Then, we can formulate

Problem 3.2: (Bi-partitioned SBDD)
Given a multiple-output function F = {f0, f1, . . . ,
fm−1}, represent F by a pair of SBDDs so that
size(SBDD,F1) + size(SBDD,F2) is minimized,
where F1 ∪ F2 = F , F1 ∩ F2 = φ, and F1 �= φ, where φ
is the null set.

It is possible that, for all non-trivial bi-partitions,
the total number of nodes in the partitioned SBDD is
greater than in the original one. In this case, we accept
the original given SBDD as the best we can do. This
is represented as the trivial partition F = (F, φ). For
example, we choose F = (F, φ) to realize the functions
in Example 2.1 since the only non-trivial partition pro-
duces a larger node count.

Algorithm 3.1: (Bi-partition of an SBDD: Exact
method)

1. min size←∞.
2. Enumerate a bi-partition {F1, F2} of F = {f0, f1,
. . . , fm−1} (where F1 ∪ F2 = F and F1 ∩ F2 = φ).
If there are no more bi-partitions, stop.

3. size← size(SBDD,F1) + size(SBDD,F2).
4. If (size < min size), then min size← size.
5. Go to 2.

Although Algorithm 3.1 produces an exact minimum
solution, it requires T = 2m−1 minimizations of pairs
of SBDDs, since T is the number of bi-partitions on
F . So, this method is only practical for functions with
small n and m. The following is a heuristic algorithm
that can be used for functions with large BDDs.

Algorithm 3.2: (Bi-partition of an SBDD: Heuristic
method)

1. Simplify the SBDD for F by using a heuristic
method, i.e. [14]. Let π be an ordering of the input
variables that simplifies the SBDD for F .
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2. Simplify the BDD for each component function fi

(i = 0, 1, . . . ,m − 1) using the method of [14].

Let ri =
size(BDD, fi)
size(BDD, fi, π)

, where size(BDD, fi)

is the number of nodes in the minimum BDD for
fi and size(BDD, fi, π) is the number of nodes in
the BDD for fi under the ordering π.

3. rav =
1
m

m−1∑

i=0

ri, F1 ← φ, and F2 ← φ.

For each fi

if (ri ≤ rav) then
F1 ← F1 ∪ {fi}

else
F2 ← F2 ∪ {fi}.

4. Minimize the SBDDs of F1 and F2. e1 ←
size(SBDD,F1) + size(SBDD,F2) using the
method of [14].

5. Let fh be a function that has the minimal ri in F2.
6. Minimize the SBDDs of F1 ∪ {fh} and F2 − {fh}.
e2 ← size(SBDD,F1 ∪ {fh}) + size(SBDD,F2 −
{fh}) using the method of [14].
If (e1 > e2) then
e1 ← e2
F1 ← F1 ∪ {fh}
F2 ← F2 − {fh}
go to 5

7. Let fh be a function that has the maximal ri in
F1.

8. Minimize the SBDDs of F2 ∪ {fh} and F1 − {fh}.
e2 ← size(SBDD,F2 ∪ {fh}) + size(SBDD,F1 −
{fh}) using the method of [14].
If (e1 > e2) then
e1 ← e2
F1 ← F1 − {fh}
F2 ← F2 ∪ {fh}
go to 7

9. Stop.

The idea of the algorithm is as follows:

1) Let πi be an optimal ordering of the input variables
for a BDD that represents function fi. Let π be
an optimal ordering of the input variables for an
SBDD that represents all functions in F .

2) When the ratio
size(BDD, fi)
size(BDD, fi, π)

is large the or-

dering π is near optimal for fi. On the other hand,
when it is small, π is far from optimal.

3) In Step 3, we partition F into two sets F1 and F2.
F1 consists of the functions for which π is a good
ordering, and F2 consists of functions for which π
is not a good ordering.

4) In Steps 5–8, we improve the partition by moving
functions likely to produce an improvement from
one set to the other.

4. Node Sharing

In this section, we consider the case where nodes are
shared across SBDDs.

Example 4.1: In Fig. 2, the node labeled x6 and the
constant nodes from the two BDDs can be combined
yielding a BDD with 13 nodes and reducing the node
count by 3. However, the resulting BDD is not an
SBDD because of different orderings for input variables
across middle level nodes. (End of Example)

As shown in the above example, node sharing can
produce a BDD that is not an SBDD. Thus, we cannot
use existing BDD packages. Therefore, we perform this
operation as a separate process.

Proposition 4.1: Let v0 and v1 be nodes in two SB-
DDs: SBDD0 and SBDD1, respectively. If v0 and v1
represent the same logic function, then one can be re-
moved.

This is a sufficient condition to share a node be-
tween two SBDDs. The following example shows a case
where two nodes representing different functions can be
shared.

Example 4.2: Consider the two functions:

f0 = (x̄1x2 ∨ x1x̄2)x3,

f1 = x1x̄2x3 ∨ x̄1x2x̄3.

Figure 4 shows a pair of BDDs representing f0 and
f1. Note that v0 represents f0, and v1 represents the
function x1x3. Figure 5 shows the BDD after node
sharing. Note that v0 is used instead of v1 in the BDD

Fig. 4 Pair of BDDs.

Fig. 5 Sharing nodes that represent different functions.
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of f1. Indeed, v2 represents the function f1 since,

x̄2f0 ∨ x2x̄1x̄3 = x1x̄2x3 ∨ x2x̄1x̄3 = f1.

Note that a significant savings has occurred. The com-
bined BDD has 9 nodes, while the separate BDDs have
a total of 13 nodes. Note also that the BDD in Fig. 5 is
not an SBDD, since x2 occurs twice in paths from the
node for v2 to the constant nodes. (End of Example)

This example shows a way to reduce significantly
the number of nodes in bi-partitioned SBDDs. It is,
however, difficult to apply since it depends on subtle
algebraic equivalences. In the interest of an efficient
algorithm, we ignore the above case, and we only use
Proposition 4.1 for node sharing between two SBDDs.

Algorithm 4.1: (Node sharing between two SBDDs)

1. For each node, assign two weights as follows:

weight a = |ψ|

weight b =
n∑

i=1

2i depend(ψ, i),

where ψ is the function represented by the node,
|ψ| is the number of 1’s in its truth table, n is the
number of variables, and

depend(ψ, i) = 1 if ψ depends on xi

= 0 otherwise.

2. Select a node v0 from SBDD0 and a node v1 from
SBDD1. For each pair of nodes (v0, v1) that have
the same values for both weight a and weight b,
check if they represent the same function. If so, re-
move the node vi (not the subtree) that has fewer
successor nodes that are shared by other parts of
the SBDD. All edges leading to the eliminated
node vi, are redirected to the other node v1−i.

3. Remove un-referenced nodes (e.g., a node may
have no incoming edges because its predecessors
were eliminated in Step 2).

4. Repeat Steps 2 and 3 until all pairs of nodes are
considered.

The overall algorithm is as follows.

Algorithm 4.2: (Total Algorithm)

1. Apply Algorithm 3.2 to form a bi-partitioned
SBDD.

2. Apply Algorithm 4.1 to share as many nodes as
possible across the two BDDs.

5. Experimental Results

5.1 Performance of Heuristic Method

We implemented Algorithms 4.2 for many benchmark
functions [23]. Table 1 lists the functions for which a bi-
partitioned SBDD yielded fewer nodes than its mono-
lithic SBDD. We applied Algorithm 3.2 to 69 functions
of which 19 resulted in a reduction. In these cases, node
sharing was not performed (i.e. Algorithm 3.2 only was
applied). In the case of apex7, a reduction of 22.8%
was achieved.

Table 2 lists the functions where the non-terminal
nodes were reduced by node sharing (i.e. Algorithm 3.2
and 4.1 were used). Unfortunately, the number of nodes
reduced by Algorithm 4.1 is not so large.

We applied Algorithm 3.2 to the results of Table 1,
recursively. Table 3 lists the functions where the recur-
sive application of Algorithm 3.2 reduced the total node
count. For example, for C2670, a 36.7% reduction is
achieved by the recursive application of Algorithm 3.2
over a single application. The horizontal line in Table 3

Table 1 Size of bi-partitioned SBDDs (using Algorithm 3.2 only).

Name In Out Monolithic Bi-partitioned Time (sec)

apex5 117 88 1166 1163 188.2
apex6 135 99 711 675 383.8
apex7 49 37 302 233 13.7
C499 41 32 27876 27862 2037.0
C3540 50 22 34710 34509 2672.7
C880 60 26 4166 4011 615.2
cps 24 109 1095 1044 23.4
ex5 8 63 342 339 2.9
exep 30 63 675 604 77.6
frg2 143 139 1117 1116 28.8
i8 133 81 1360 1353 1029.5
i10 257 224 24054 23341 27618.8
intb 15 7 608 607 1.4
jbp 36 57 467 444 2.1
rckl 32 7 198 188 1.1
signet 39 8 1472 1320 12.8
t2 17 16 145 137 0.5
too large 38 3 329 323 2.3
x2dn 82 56 243 220 36.7
IBM PC/AT compatible, PentiumIII 1GHz, Linux 2.2.16
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distinguishes between functions where a single applica-
tion decreases (above) or increases (below) the node
count. Thus, for functions below the line, there is an
increase initially in the number of nodes followed by a
decrease, as Algorithm 3.2 is recursively applied.

Table 2 Number of non-terminal nodes reduced by node
sharing.

Name In Out Node reduction
apex5 117 88 8
apex6 135 99 1
apex7 49 37 14
C499 41 32 2
C880 60 26 1
C3540 50 22 17
cps 24 109 1
frg2 143 139 8
i8 133 81 21
i10 257 224 234
intb 15 7 6
rckl 32 7 3
signet 39 8 3

Table 3 Sizes of SBDDs after recursive application.

Name In Out Monolithic Bi-partitioned
Once Recursive

C3540 50 22 34710 34509 34460
C880 60 26 4166 4011 4004
exep 30 63 675 604 550
i10 257 224 24054 23341 19479
intb 15 7 608 607 567
signet 39 8 1472 1326 1222
x2dn 82 56 243 220 218
C1908 33 25 7456 7707 7373
C2670 233 140 2847 2849 1801
C7552 207 108 2945 3307 2811
des 256 245 3972 4003 3862
ibm 48 17 426 427 332

5.2 Comparison of Heuristic and Exact Method

To see the quality of the bi-partitions obtained by Algo-
rithm 3.2, we compared Algorithm 3.2 with an exhaus-
tive method. The exhaustive method produced all the
partitions of the outputs. Table 4 compares the sizes of
BDDs for benchmark functions by using Algorithm 3.2
and the exhaustive method [10]. Alg3.2 denotes the
size of bi-partitioned BDDs obtained by Algorithm 3.2;
Max denotes the maximum size of bi-partitioned BDDs
over all partitions; Min denotes the minimum size of bi-
partitioned BDDs over all partitions; Average denotes
the average size of bi-partitioned BDDs for all the par-
titions.

It is noted that the heuristic, Algorithm 3.2, does
not always find the optimal bi-partition, although it is
better than the average in 9 out of 10 functions. This
heuristic can be improved by allowing it to search more
bi-partitions, for example, randomly, as in simulated
annealing. Also, improved results should occur if par-
titions with two or more parts are allowed. Table 4(a)
shows the case where the BDDs were optimized by an
exact method [10]. In this method, essentially all 2m−1

bi-partitions and all n! variable orderings are consid-
ered. Because the functions in Table 4(a) have rela-
tively few variables and few outputs, such an algorithm
completes in a reasonable time. However, for larger
functions, a fast heuristic must be used. Table 4(b)
shows the case where the BDDs were optimized by a
heuristic method [14]. Unfortunately, bi-partitioned
BDDs are often larger than monolithic ones. Table 4(b)
shows that Algorithm 3.2 obtained the minimum solu-
tion in five out of six functions.

Table 4 illustrates the advantage bi-partitioning of-
fers when the node count reduction is small, as dis-

Table 4 Comparison of the heuristic method and exact method.

(a) When BDDs are minimized by an exact algorithm [10].
Name In Out Monolithic Bi-partitioned

Alg3.2 Max Min Average
alu2 10 8 70 75 (39/36) 87 69 80.2
clip 9 5 99 105 (82/23) 113 97 106.7
ex1010 10 10 1423 1493 (193/1300) 1577 1486 1560.2
ex7 16 5 91 92 (55/37) 94 92 93.1
intb 15 7 608 595 (367/228) 636 560 601.2
max512 9 6 184 192 (122/70) 210 189 200.0
newtpla 15 5 54 55 (13/42) 61 55 57.5
t3 12 8 66 71 (14/57) 84 69 77.7
t4 12 8 44 51 (14/37) 53 46 49.5
x2 10 7 43 44 (18/26) 50 44 47.1

(b) When BDDs are minimized by a heuristic algorithm [14].
Name In Out Monolithic Bi-partitioned

Alg3.2 Max Min Average
i3 132 6 139 140 (40/100) 140 140 140.0
rckl 32 7 198 188 (105/83) 216 188 209.2
signet 39 8 1472 1320 (583/737) 1478 1316 1377.4
vg2 25 8 90 102 (89/13) 134 102 127.0
x1dn 27 6 139 140 (50/90) 174 140 164.0
x9dn 27 7 139 140 (49/91) 189 140 177.8



2698
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.12 DECEMBER 2002

cussed in the Introduction. Even if the bi-partitioned
SBDD has more nodes than the corresponding mono-
lithic SBDD, it may be more advantageous to imple-
ment the bi-partitioned SBDD especially if there no or
few shared nodes. Such a situation allows a divide-and-
conquer approach to logic implementation, since layout,
is simplified with two small circuits verses one large one.
Table 4 shows the number of nodes in each of the two
parts of the partitioned SBDD resulting from the appli-
cation of Algorithm 3.2. For example, for alu2, the two
parts have 39 and 36 nodes. There is no node sharing,
so that these two SBDDs can be laid out and placed
separately. In the case of ex1010, there is a large dis-
parity in the size of the two parts, 193 and 1300 nodes.
For this case, partitioning has a smaller advantage.

In Tables 1–4, our SBDDs do not use comple-
mented edges.

6. Conclusions and Comments

In this paper, we showed a new method to represent
a multiple-output function, partitioned SBDDs. Parti-
tioned SBDDs represent a multiple-output function by
a set of SBDDs, where each SBDD is optimized inde-
pendently. The partitioned SBDD is more canonical
than partitioned BDDs and free BDDs (FBDDs). We
developed a heuristic bi-partition algorithm for SBDDs,
and showed cases where the total number of nodes in
bi-partitioned SBDDs are smaller than in monolithic
SBDDs.

The advantages of partitioned SBDDs are

1) For each group of outputs, the orderings of the
input variables are the same. So we can use well-
developed tools for SBDDs [21].

2) When no node sharing among SBDDs is allowed,
they can be evaluated in parallel. This may be
appropriate for logic simulation applications [18],
where it is important to partition the BDD into
pieces that can be tractably processed.

3) When there is no sharing of nodes among SBDDs
the layout can be done separately. This improve-
ment in flexibility can be significant [9].

In this paper, we have focused on hardware syn-
thesis. However, our results can also be applied to

1) Software synthesis [2], [18]. Replace each non-
terminal node by an if then else statement, forming
a branching program for F . In such applications,
minimizing the number of nodes in the SBDD min-
imizes the size of the program required in the im-
plementation. Also, partitioning an SBDD allows
the corresponding programs to be developed sepa-
rately perhaps by different individuals.

2) Verification [6], [12], [13]. In verification, a mono-
lithic BDD may be too large to be stored in a
computer memory. So, in this case, the BDD is

partitioned into smaller BDDs that are analyzed
sequentially.

In hardware synthesis, one seeks as useful partitions
that have the property

size(SBDD,F1) + size(SBDD,F2)
< size(SBDD,F ).

However, for verification, the criteria for useful-
ness is different. Each SBDD is stored in com-
puter memory one at a time, and the partition
is used to reduce the peak memory size. In
such a case, the bi-partitions are used to reduce
max{size(SBDD,F1), size(SBDD,F2)}.

Partitioned BDDs are considered in [12]. Their ap-
plication is verification, in which case, extremely large
BDDs are needed. Partitioning is a means of reducing
BDD size so that each part fits into memory. Their
experimental results show that the total sizes over all
parts of a partitioned BDD are less than the size of the
original un-partitioned BDD in 13 out of 20 benchmark
functions. That is, partitioning results in a reduction
in size in 65% of the benchmark functions.
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